Extensions 1→N→G→Q→1 with N=C23 and Q=D18

Direct product G=NxQ with N=C23 and Q=D18
dρLabelID
C24xD9144C2^4xD9288,839

Semidirect products G=N:Q with N=C23 and Q=D18
extensionφ:Q→Aut NdρLabelID
C23:D18 = C22xC3.S4φ: D18/C6S3 ⊆ Aut C2336C2^3:D18288,835
C23:2D18 = C23:2D18φ: D18/C9C22 ⊆ Aut C2372C2^3:2D18288,147
C23:3D18 = D4:6D18φ: D18/C9C22 ⊆ Aut C23724C2^3:3D18288,358
C23:4D18 = C2xD4xD9φ: D18/D9C2 ⊆ Aut C2372C2^3:4D18288,356
C23:5D18 = C22xC9:D4φ: D18/C18C2 ⊆ Aut C23144C2^3:5D18288,366

Non-split extensions G=N.Q with N=C23 and Q=D18
extensionφ:Q→Aut NdρLabelID
C23.1D18 = C12.1S4φ: D18/C6S3 ⊆ Aut C23726-C2^3.1D18288,332
C23.2D18 = C4xC3.S4φ: D18/C6S3 ⊆ Aut C23366C2^3.2D18288,333
C23.3D18 = C22:D36φ: D18/C6S3 ⊆ Aut C23366+C2^3.3D18288,334
C23.4D18 = C2xC6.S4φ: D18/C6S3 ⊆ Aut C2372C2^3.4D18288,341
C23.5D18 = C23.D18φ: D18/C6S3 ⊆ Aut C23366C2^3.5D18288,342
C23.6D18 = C22.D36φ: D18/C9C22 ⊆ Aut C23724C2^3.6D18288,13
C23.7D18 = C23:2Dic9φ: D18/C9C22 ⊆ Aut C23724C2^3.7D18288,41
C23.8D18 = C23.8D18φ: D18/C9C22 ⊆ Aut C23144C2^3.8D18288,89
C23.9D18 = C23.9D18φ: D18/C9C22 ⊆ Aut C23144C2^3.9D18288,93
C23.10D18 = D18:D4φ: D18/C9C22 ⊆ Aut C23144C2^3.10D18288,94
C23.11D18 = Dic9.D4φ: D18/C9C22 ⊆ Aut C23144C2^3.11D18288,95
C23.12D18 = C36.17D4φ: D18/C9C22 ⊆ Aut C23144C2^3.12D18288,146
C23.13D18 = C36:2D4φ: D18/C9C22 ⊆ Aut C23144C2^3.13D18288,148
C23.14D18 = Dic9:D4φ: D18/C9C22 ⊆ Aut C23144C2^3.14D18288,149
C23.15D18 = C36:D4φ: D18/C9C22 ⊆ Aut C23144C2^3.15D18288,150
C23.16D18 = C23.16D18φ: D18/D9C2 ⊆ Aut C23144C2^3.16D18288,87
C23.17D18 = C22:2Dic18φ: D18/D9C2 ⊆ Aut C23144C2^3.17D18288,88
C23.18D18 = C22:C4xD9φ: D18/D9C2 ⊆ Aut C2372C2^3.18D18288,90
C23.19D18 = Dic9:4D4φ: D18/D9C2 ⊆ Aut C23144C2^3.19D18288,91
C23.20D18 = C22:3D36φ: D18/D9C2 ⊆ Aut C2372C2^3.20D18288,92
C23.21D18 = C22.4D36φ: D18/D9C2 ⊆ Aut C23144C2^3.21D18288,96
C23.22D18 = D4xDic9φ: D18/D9C2 ⊆ Aut C23144C2^3.22D18288,144
C23.23D18 = C23.23D18φ: D18/D9C2 ⊆ Aut C23144C2^3.23D18288,145
C23.24D18 = C2xD4:2D9φ: D18/D9C2 ⊆ Aut C23144C2^3.24D18288,357
C23.25D18 = C36.49D4φ: D18/C18C2 ⊆ Aut C23144C2^3.25D18288,134
C23.26D18 = C23.26D18φ: D18/C18C2 ⊆ Aut C23144C2^3.26D18288,136
C23.27D18 = C4xC9:D4φ: D18/C18C2 ⊆ Aut C23144C2^3.27D18288,138
C23.28D18 = C23.28D18φ: D18/C18C2 ⊆ Aut C23144C2^3.28D18288,139
C23.29D18 = C36:7D4φ: D18/C18C2 ⊆ Aut C23144C2^3.29D18288,140
C23.30D18 = C2xC18.D4φ: D18/C18C2 ⊆ Aut C23144C2^3.30D18288,162
C23.31D18 = C24:4D9φ: D18/C18C2 ⊆ Aut C2372C2^3.31D18288,163
C23.32D18 = C2xD36:5C2φ: D18/C18C2 ⊆ Aut C23144C2^3.32D18288,355
C23.33D18 = C18.C42central extension (φ=1)288C2^3.33D18288,38
C23.34D18 = C2xC4xDic9central extension (φ=1)288C2^3.34D18288,132
C23.35D18 = C2xDic9:C4central extension (φ=1)288C2^3.35D18288,133
C23.36D18 = C2xC4:Dic9central extension (φ=1)288C2^3.36D18288,135
C23.37D18 = C2xD18:C4central extension (φ=1)144C2^3.37D18288,137
C23.38D18 = C22xDic18central extension (φ=1)288C2^3.38D18288,352
C23.39D18 = C22xC4xD9central extension (φ=1)144C2^3.39D18288,353
C23.40D18 = C22xD36central extension (φ=1)144C2^3.40D18288,354
C23.41D18 = C23xDic9central extension (φ=1)288C2^3.41D18288,365

׿
x
:
Z
F
o
wr
Q
<